Thursday, 19 January 2012

VDAX - details



^VDAXDEUTSCHE BOERS VDAX
> # Pull S&P500 index data from Yahoo! Finance
> getSymbols("^VDAX", from="2000-01-01")
[1] "VDAX"
> 
> # Calculate the RSI indicator
> rsi <- RSI(Cl(VDAX), 2)
> 
> # Calculate Close-to-Close returns
> ret <- ROC(Cl(VDAX))
> ret[1] <- 0
> 
> # This function gives us some standard summary
> # statistics for our trades.
> tradeStats <- function(signals, returns) {
+ # Inputs:
+ # signals : trading signals
+ # returns : returns corresponding to signals
+ 
+ # Combine data and convert to data.frame
+ sysRet <- signals * returns * 100
+ posRet <- sysRet > 0 # Positive rule returns
+ negRet <- sysRet < 0 # Negative rule returns
+ dat <- cbind(signals,posRet*100,sysRet[posRet],sysRet[negRet],1)
+ dat <- as.data.frame(dat)
+ 
+ # Aggreate data for summary statistics
+ means <- aggregate(dat[,2:4], by=list(dat[,1]), mean, na.rm=TRUE)
+ medians <- aggregate(dat[,3:4], by=list(dat[,1]), median, na.rm=TRUE)
+ sums <- aggregate(dat[,5], by=list(dat[,1]), sum)
+ 
+ colnames(means) <- c("Signal","% Win","Mean Win","Mean Loss")
+ colnames(medians) <- c("Signal","Median Win","Median Loss")
+ colnames(sums) <- c("Signal","# Trades")
+ 
+ all <- merge(sums,means)
+ all <- merge(all,medians)
+ 
+ wl <- cbind( abs(all[,"Mean Win"]/all[,"Mean Loss"]),
+ abs(all[,"Median Win"]/all[,"Median Loss"]) )
+ colnames(wl) <- c("Mean W/L","Median W/L")
+ 
+ all <- cbind(all,wl)
+ return(all)
+ }
> 
> # This function determines position size and
> # enables us to test several ideas with much
> # greater speed and flexibility.
> rsi2pos <- function(ind, indIncr=5, posIncr=0.25) {
+ # Inputs:
+ # ind : indicator vector
+ # indIncr : indicator value increments/breakpoints
+ # posIncr : position value increments/breakpoints
+ 
+ # Initialize result vector
+ size <- rep(0,NROW(ind))
+ 
+ # Long
+ size <- ifelse(ind < 4*indIncr, (1-posIncr*3), size)
+ size <- ifelse(ind < 3*indIncr, (1-posIncr*2), size)
+ size <- ifelse(ind < 2*indIncr, (1-posIncr*1), size)
+ size <- ifelse(ind < 1*indIncr, (1-posIncr*0), size)
+ 
+ # Short
+ size <- ifelse(ind > 100-4*indIncr, 3*posIncr-1, size)
+ size <- ifelse(ind > 100-3*indIncr, 2*posIncr-1, size)
+ size <- ifelse(ind > 100-2*indIncr, 1*posIncr-1, size)
+ size <- ifelse(ind > 100-1*indIncr, 0*posIncr-1, size)
+ 
+ # Today's position ('size') is based on today's
+ # indicator, but we need to apply today's position
+ # to the Close-to-Close return at tomorrow's close.
+ size <- lag(size)
+ 
+ # Replace missing signals with no position
+ # (generally just at beginning of series)
+ size[is.na(size)] <- 0
+ 
+ # Return results
+ return(size)
+ }
> 
> # Calculate signals with the 'rsi2pos()' function,
> # using 5 as the RSI step: 5, 10, 15, 20, 80, 85, 90, 95
> # and 0.25 as the size step: 0.25, 0.50, 0.75, 1.00
> sig <- rsi2pos(rsi, 5, 0.25)
> 
> # Break out the long (up) and short (dn) signals
> sigup <- ifelse(sig > 0, sig, 0)
> sigdn <- ifelse(sig < 0, sig, 0)
> 
> # Calculate rule returns
> ret_up <- ret * sigup
> colnames(ret_up) <- 'Long System Return'
> ret_dn <- ret * sigdn
> colnames(ret_dn) <- 'Short System Return'
> ret_all <- ret * sig
> colnames(ret_all) <- 'Total System Return'
> 
> # Create performance graphs
> png(filename="20090606_rsi2_performance.png", 720, 720)
> charts.PerformanceSummary(cbind(ret_up,ret_dn),methods='none',
+ main='RSI(2) Performance - RSI steps = 5, Size steps = 0.25')
> dev.off()
null device 
          1 
> 
> # Print trade statistics table
> cat('\nRSI(2) Trade Statistics - RSI steps = 5, Size steps = 0.25\n')

RSI(2) Trade Statistics - RSI steps = 5, Size steps = 0.25
> print(tradeStats(sig,ret))
  Signal # Trades    % Win  Mean Win  Mean Loss Median Win Median Loss
1  -1.00       88 53.40909 5.2745572 -7.5531197  4.2143812  -4.9583045
2  -0.75       84 54.76190 4.5101721 -2.7175500  3.4976644  -2.1517287
3  -0.50       86 53.48837 1.7966237 -1.6279009  1.4357783  -1.0054476
4  -0.25       75 53.33333 1.0926200 -1.0269003  1.0851092  -0.7834309
5   0.00      820  0.00000       NaN        NaN         NA          NA
6   0.25       99 43.43434 0.8825651 -0.8701899  0.6996132  -0.6661582
7   0.50      108 47.22222 1.9479694 -1.5961592  1.0807337  -1.1223559
8   0.75      110 58.18182 2.3548429 -2.4669566  1.7238949  -1.8080330
9   1.00       93 59.13978 3.9157417 -2.4094268  2.5807884  -1.9412818
   Mean W/L Median W/L
1 0.6983283  0.8499642
2 1.6596464  1.6255136
3 1.1036444  1.4279991
4 1.0639982  1.3850732
5       NaN         NA
6 1.0142213  1.0502209
7 1.2204104  0.9629154
8 0.9545539  0.9534643
9 1.6251756  1.3294249
> 
> # Print drawdown table
> cat('\nRSI(2) Drawdowns - RSI steps = 5, Size steps = 0.25\n')

RSI(2) Drawdowns - RSI steps = 5, Size steps = 0.25
> print(table.Drawdowns(ret_all, top=10))
         From     Trough         To   Depth Length To Trough Recovery
1  2011-06-30 2011-08-17        -0.5885    142        35       NA
2  2008-09-05 2009-01-28 2009-07-02 -0.4246    207        99      108
3  2010-04-29 2010-05-07 2010-06-04 -0.3366     27         7       20
4  2008-01-03 2008-02-01 2008-06-02 -0.3246    104        22       82
5  2011-03-11 2011-03-16 2011-06-23 -0.2317     71         4       67
6  2006-11-20 2007-01-10 2007-02-27 -0.2206     69        35       34
7  2007-02-28 2007-03-14 2007-05-24 -0.2184     59        11       48
8  2010-06-11 2010-07-09 2010-08-19 -0.1418     50        21       29
9  2007-06-06 2007-06-07 2007-07-19 -0.1059     31         2       29
10 2009-07-14 2009-07-17 2009-10-22 -0.1048     72         4       68
> 
> # Print downside risk table
> cat('\nRSI(2) Downside Risk - RSI steps = 5, Size steps = 0.25\n')

RSI(2) Downside Risk - RSI steps = 5, Size steps = 0.25
> print(table.DownsideRisk(ret_all))
                              Total System Return
Semi Deviation                             0.0231
Gain Deviation                             0.0328
Loss Deviation                             0.0346
Downside Deviation (MAR=210%)              0.0254
Downside Deviation (Rf=0%)                 0.0420
Downside Deviation (0%)                    0.0420
Maximum Drawdown                           0.5885
Historical VaR (95%)                      -0.0326
Historical ES (95%)                       -0.0662
Modified VaR (95%)                        -0.0325
Modified ES (95%)                         -0.0325
> 
> # Calculate signals with the 'rsi2pos()' function
> # using new RSI and size step values
> sig <- rsi2pos(rsi, 10, 0.3)
> 
> # Break out the long (up) and short (dn) signals
> sigup <- ifelse(sig > 0, sig, 0)
> sigdn <- ifelse(sig < 0, sig, 0)
> 
> # Calculate rule returns
> ret_up <- ret * sigup
> colnames(ret_up) <- 'Long System Return'
> ret_dn <- ret * sigdn
> colnames(ret_dn) <- 'Short System Return'
> ret_all <- ret * sig
> colnames(ret_all) <- 'Total System Return'
> 
> # Calculate performance statistics
> png(filename="20090606_rsi2_performance_updated.png", 720, 720)
> charts.PerformanceSummary(cbind(ret_up,ret_dn),methods='none',
+ main='RSI(2) Performance - RSI steps = 10, Size steps = 0.30')
> dev.off()
null device 
          1 
> 
> # Print trade statistics table
> cat('\nRSI(2) Trade Statistics - RSI steps = 10, Size steps = 0.30\n')

RSI(2) Trade Statistics - RSI steps = 10, Size steps = 0.30
> print(tradeStats(sig,ret))
  Signal # Trades    % Win  Mean Win  Mean Loss Median Win Median Loss
1   -1.0      172 54.06977 5.6400869 -5.6151757  4.4680089  -3.9771323
2   -0.7      161 53.41615 2.7683257 -2.5567712  2.6039167  -1.8396178
3   -0.4      134 57.46269 1.5828935 -1.7327681  1.2381627  -1.1485039
4   -0.1      127 48.03150 0.4202959 -0.4784686  0.3746662  -0.2700018
5    0.0      246  0.00000       NaN        NaN         NA          NA
6    0.1      145 48.27586 0.4256790 -0.3975987  0.2854013  -0.3650601
7    0.4      168 47.61905 1.8159699 -1.4675602  1.6329793  -1.2041778
8    0.7      207 45.41063 2.6100623 -2.3355773  1.8571666  -1.6712777
9    1.0      203 58.62069 3.4984234 -2.8912486  2.3045289  -2.3105522
   Mean W/L Median W/L
1 1.0044364  1.1234247
2 1.0827429  1.4154661
3 0.9135056  1.0780657
4 0.8784189  1.3876432
5       NaN         NA
6 1.0706247  0.7817928
7 1.2374074  1.3560949
8 1.1175234  1.1112257
9 1.2100043  0.9973932
> 
> # Print drawdown table
> cat('\nRSI(2) Drawdowns - RSI steps = 10, Size steps = 0.30\n')

RSI(2) Drawdowns - RSI steps = 10, Size steps = 0.30
> print(table.Drawdowns(ret_all, top=10))
         From     Trough         To   Depth Length To Trough Recovery
1  2011-06-30 2011-08-17        -0.6565    142        35       NA
2  2008-09-04 2008-11-04 2009-06-22 -0.5067    200        44      156
3  2008-01-16 2008-02-01 2008-06-25 -0.3734    112        13       99
4  2010-04-29 2010-05-07 2010-06-04 -0.3455     27         7       20
5  2007-02-28 2007-03-23 2007-05-31 -0.2791     62        18       44
6  2011-02-22 2011-03-16 2011-06-21 -0.2548     82        17       65
7  2010-06-10 2010-07-09 2010-11-16 -0.2429    114        22       92
8  2006-11-16 2007-01-10 2007-01-22 -0.2077     45        37        8
9  2007-09-06 2007-09-24 2007-11-26 -0.1744     58        13       45
10 2006-06-19 2006-07-04 2006-07-12 -0.1557     18        12        6
> 
> # Print downside risk table
> cat('\nRSI(2) Downside Risk - RSI steps = 10, Size steps = 0.30\n')

RSI(2) Downside Risk - RSI steps = 10, Size steps = 0.30
> print(table.DownsideRisk(ret_all))
                              Total System Return
Semi Deviation                             0.0319
Gain Deviation                             0.0314
Loss Deviation                             0.0309
Downside Deviation (MAR=210%)              0.0327
Downside Deviation (Rf=0%)                 0.0380
Downside Deviation (0%)                    0.0380
Maximum Drawdown                           0.6565
Historical VaR (95%)                      -0.0472
Historical ES (95%)                       -0.0826
Modified VaR (95%)                        -0.0481
Modified ES (95%)                         -0.0481
> 
> 


No comments:

Post a Comment